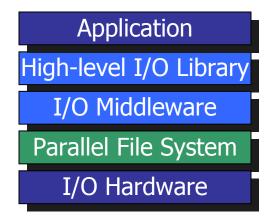


Birds of a Feather SC2005 Seattle, WA


HEC I/O Software Stacks

- Computational science applications have complex I/O needs
 - Performance and scalability requirements
 - Usability (Interfaces!)
- Software layers combine to provide functionality
 - High-level I/O libraries provide useful interfaces
 - Examples: Parallel netCDF, HDF5
 - I/O Middleware optimizes and matches to file system
 - Example: MPI-IO
 - Parallel file system organizes hardware and actually moves data

Graphic from J. Tannahill, LLNL

Role of Parallel File Systems

Manage storage hardware

- Present a single logical view of lots of components
- Provide data redundancy for some environments

Scale to very large numbers of clients

- Handle many concurrent, independent accesses
- Extract as much of the hardware performance as possible
- Consider client failures to be a common case

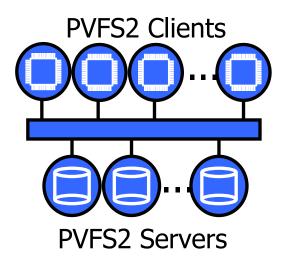
Provide building-block API and semantics

- PFS is only one part of the I/O system
- Must hook efficiently to MPI-IO implementation

• Not...

- Replace your home directory file system
- Store billions of tiny files
- Be "global"

PVFS2 at a Glance


- "Intelligent" servers
 - Single server type
 - Can manage metadata, data, or both
 - Present a global file name space
- Messaging over existing communication network
 - Leverage that expensive network (e.g. GigE, Myrinet, IB)
 - Protocol tuned for HEC applications

Storage on disks locally attached to servers

- Both data and metadata may be distributed across servers
- File data striped across servers for performance
- Possibly shared access for failover purposes

MPI-IO and VFS interfaces for clients

- VFS for utilities, MPI-IO for applications
- Open source, open development, and available for free
 - Single CVS source tree with anonymous access
 - Mailing lists for user and developer discussion
 - Good vehicle for research in parallel I/O, in addition to production use

Collaborators!

- Core development
 - Argonne National Laboratory
 - Ross, Lang, Latham, Vilayannur, Gropp, Thakur, Beckman, Coglan, Yoshii, Iskra
 - Clemson University
 - Ligon, Settlemyer
 - Ohio Supercomputer Center
 - Wyckoff, Baer
- Collaborators
 - Northwestern University
 - Choudhary, Ching
 - Ohio State University
 - Panda, Yu
 - University of Heidelberg
 - Ludwig, Kunkel
 - Acxiom Corporation
 - Carns, Metheny
 - Penn State University
 - Sivasubramaniam, Kandemir
 - University of Michigan
 - Honeyman, Hildebrand

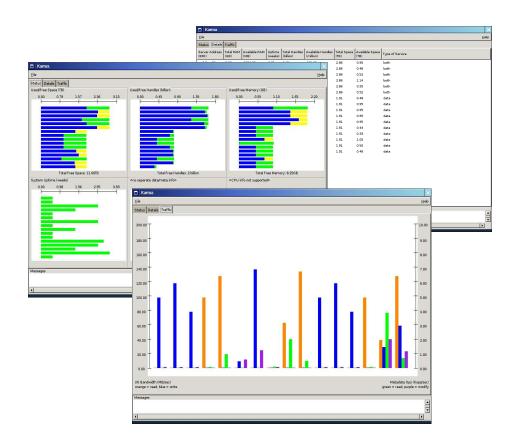
Heidelberg

Acxiom Corporation

 "... the world's largest processor of consumer data ..."

- Fortune magazine
- Multi-national (US, UK, France, Australia, Japan)
- Houses data and runs analytics applications for financial and other large businesses
 - Compute and data intensive
 - 24/7 operation
 - Highly-available, redundant resources
 - 7000+ compute nodes deployed in widely distributed environment

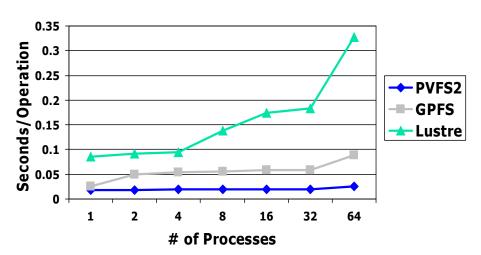
Acxiom and PVFS



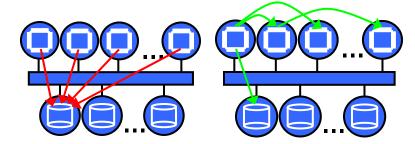
- Deploy PVFS1 as data storage solution
 - 80 PVFS clusters
 - 16 nodes/cluster
 - Data loosely mirrored between clusters for redundancy
 - 750TB+ of PVFS storage deployed so far
 - Many internal applications use PVFS libraries directly
- Actively participating in PVFS2 development
 - Hired Phil Carns ©
 - Evaluating PVFS2 as replacement for existing PVFS deployment
 - Interest in highly available PVFS2 clusters

Accessibility and Management

- Doesn't take a rocket scientist to install
 - One server type, simple configuration
- Can be re-exported via NFS for access on other OSes
- GUI and command line tools for monitoring and administration
 - pvfs2-fsck for salvaging damaged file systems



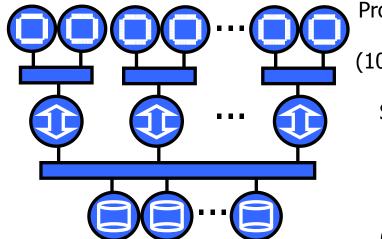
Scalable MPI-IO



- MPI-IO is a critical component of the HEC I/O stack
 - Used both directly and indirectly by HEC applications
- Without tuning FS can see storm of calls for MPI-IO operations such as open, create, and resize
- PVFS2 and ROMIO MPI-IO implementation work together to make these operations efficient and scalable
- Noncontiguous I/O advances in PVFS2 and ROMIO as well...

MPI-IO Collective File Create

PVFS2 results from OSC; Lustre and GPFS from LLNL


Unoptimized MPI-IO create and open operations require communication from every process to the file system. With optimizations, communication between processes and file system is minimized.

Very Large Scale Systems

Processors running applications (10,000s-100,000s)

Support nodes (100s-1000s)

I/O devices or servers (100s-1000s)

- PVFS2 and ROMIO MPI-IO are designed to meet the demands of this scale
 - I/O aggregation, statelessness, lockless solutions, rich semantics, and failure tolerance
- (Some of) these systems have support nodes between processors and storage
 - Building software (with others) to efficiently handle I/O forwarding from processors to storage
 - Hoping this approach will be adopted across the board

PVFS2 is ready for use.

- Runs on a wide variety of architectures, Linux kernels, and interconnects
- Running in production, actively tested by many users
 - Averaging 130+ downloads per month
 - 156 PVFS2-users subscribers
- Performance will improve, but it isn't bad now (multi-GB/sec large I/O)
- Documentation, support mailing lists, etc. are all in place
- Failover, pvfs2-fsck, and GUI monitoring help complete the package

Next...

- Troy Baer (Ohio Supercomputer Center)
 PVFS2 deployment at OSC
- Avery Ching (Northwestern Univ.)
 Noncontiguous I/O, ROMIO, and PVFS2
- Dean Hildebrand (Univ. of Michigan)
 NFSv4, pNFS, and PVFS2
- Rob Latham (Argonne)
 PVFS2 on IBM BlueGene/L systems
- Open discussion

PVFS2 in Production at OSC

Troy Baer
Science & Technology Support Group
Ohio Supercomputer Center

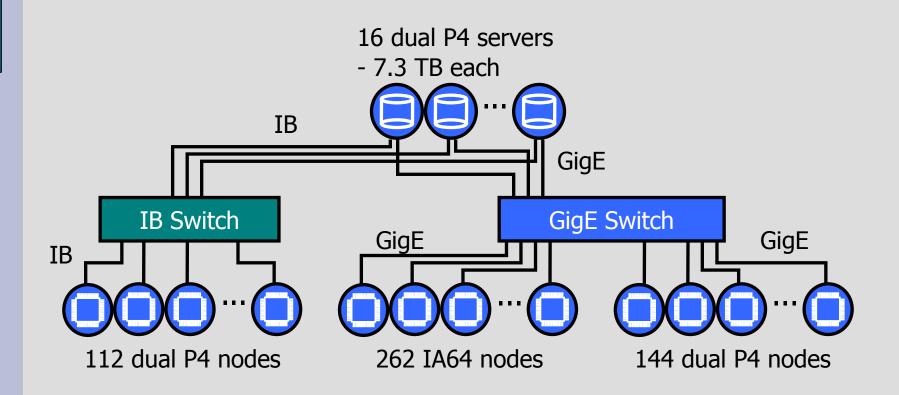
PVFS2 in Production at OSC

- OSC's Columbus HPC environment
 - HPC systems
 - Mass storage environment
- PVFS2 at OSC
 - Configuration
 - Performance
 - Trials and Tribulations
 - Applications

OSC's Columbus HPC Environment

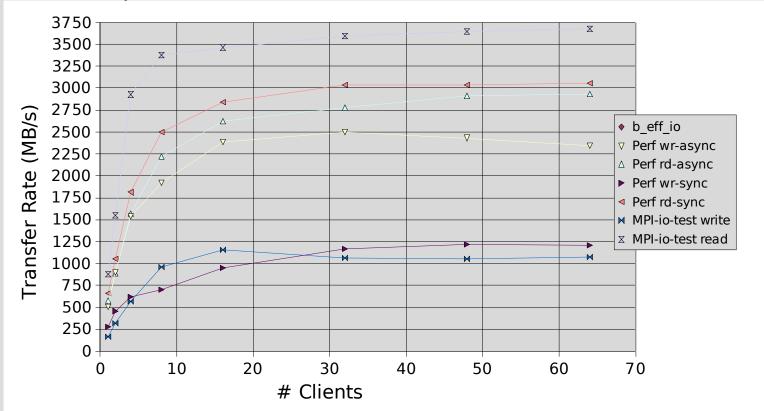
- Pentium 4 cluster
 - 112 dual 2.4GHz nodes with InfiniBand and Gigabit Ethernet
 - 144 dual 2.4GHz nodes with Gigabit Ethernet
- Itanium 2 cluster
 - 128 dual 0.9GHz nodes with Myrinet and Gigabit
 Ethernet
 - 110 dual 1.4GHz nodes with Myrinet and Gigabit Ethernet
 - 20 dual 0.9GHz nodes with Gigabit Ethernet
 - 1 32-way 1.3GHz SGI Altix 3700
 - 3 16-way 1.4GHz SGI Altix 350s

OSC's Columbus HPC Environment (con't.)


- Mass Storage Environment
 - 4 IBM FAStT900s with 12 TB of FC disks each
 - 20 IBM FAStT600s with 20 TB of SATA disks each
 - IBM 3584 tape library with 4 drives and ~80 TB of LTO tapes
 - 7 NFS servers for user home directories (~56 TB total)
 - 2 TSM backup servers
 - 16 PVFS2 servers (~116 TB total)

PVFS2 at OSC -- Goals

High performance


- Equal or better than local disk for serial applications for very large files
- Much better than NFS for parallel applications
- Use high performance network (eg. IB) where available
- High capacity
 - Much larger than any single node's local disk
 - Allow for very data-intensive applications
- Shared
 - Across multiple architectures where possible

PVFS2 at OSC -- Configuration

PVFS2 at OSC -- Performance

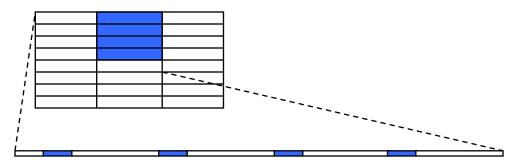
- Serial performance over GigE:
 - 96.1 MB/s read (4 MB buffer size)
 - 90.9 MB/s write (4 MB buffer size)
- Parallel performance over IB:

Trials and Tribulations

- Not all software related!
 - GigE network topology was suboptimal for parallel I/O, particularly from IA64 nodes
 - Fixed by an upgrade of core GigE switch in October
- Most software problems have been with kernel VFS driver
 - Some vendors still only support Linux 2.4
 - Ugliest problems are those where the kernel driver cannot be unloaded once loaded

PVFS2 at OSC -- Applications

- The killer app is computational chemistry... but not necessarily the way you might expect.
 - Serial Gaussian jobs generating 300+ GB scratch files – too big to fit on any node's local disk!
 - Several independent research groups
- Another heavy user is CS research
 - Indexing metadata from HDF5 files in parallel


Research in Noncontiguous I/O

Avery Ching Northwestern University

Noncontiguous I/O

 File views and MPI datatypes allow users and libraries to describe noncontiguous I/O

- PVFS2 allows these regions to be described concisely as well
- ROMIO MPI-IO implementation can convert MPI-IO descriptions into PVFS2 ones
 - Current released version is not optimal

POSIX I/O

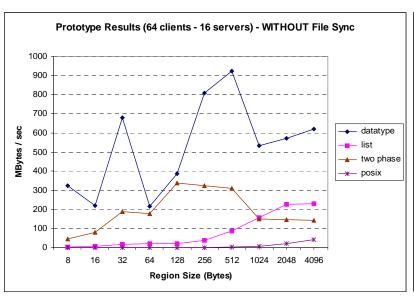
- Most file systems support this interface
- Break noncontiguous I/O operations into multiple contiguous I/O operations
- Often generates large number of I/O operations for noncontiguous I/O
- Small I/O operations is inefficient for hard disks

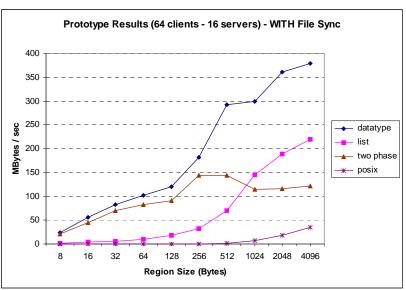
Two-phase I/O

- A collective I/O optimization built on the POSIX I/O interface
- I/O aggregators split file into domains and use data sieving I/O for all I/O operations
- Improves on data sieving by eliminating overlapping file regions and consistency control
- Overheads include passing data over the network twice, accessing some unused file data and in the write case r-m-w sequence cost

List I/O

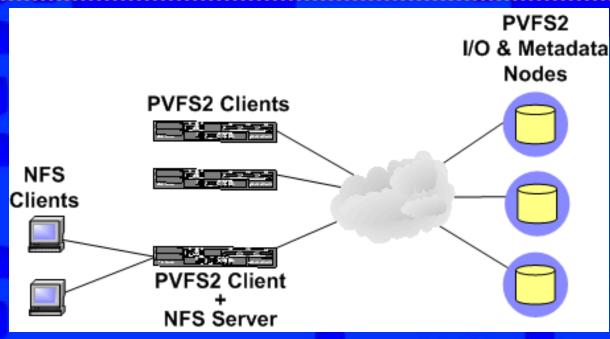
- A file system interface optimization
- A single I/O operation can handle noncontiguous
 I/O access patterns
- Overhead of passing file offsets and lengths across network on an I/O operation
- I/O operations split up after a fixed number of offset-length pairs


Datatype I/O



- A file system interface optimization
- Use derived datatypes to handle noncontiguous I/O
- No additional network bandwidth for increased region counts
- An efficient interface for structured data access

Prototype Results

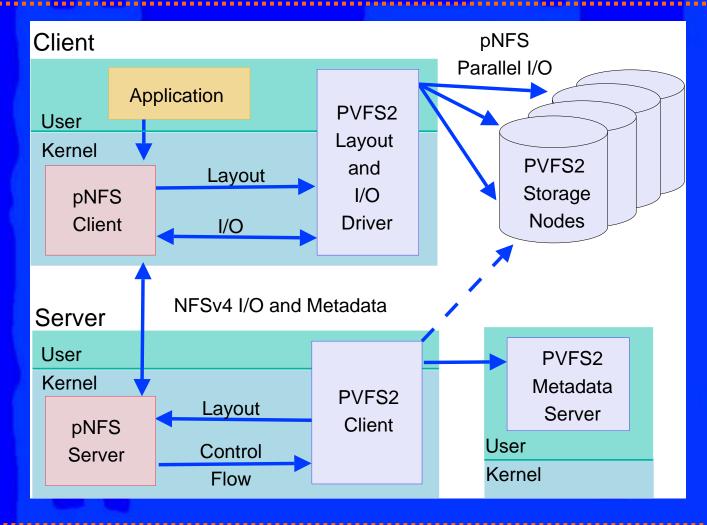

- Noncontiguous I/O implementations significantly affect performance
- Prototype MPI-IO driver for PVFS2 will be eventually integrated into ROMIO
- Automatic hint selection and performance tuning are necessary before integration

NFSv4, pNFS, and PVFS2

Dean Hildebrand

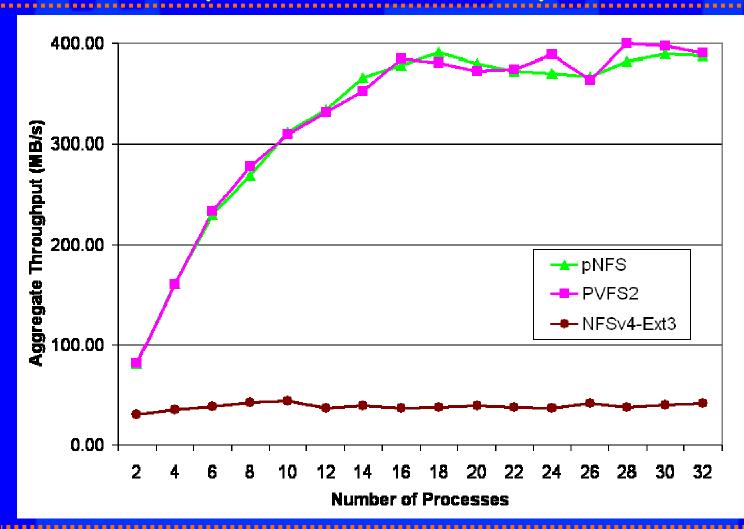
Advisor: Peter Honeyman Center For Information Technology Integration University of Michigan

NFS and PVFS2

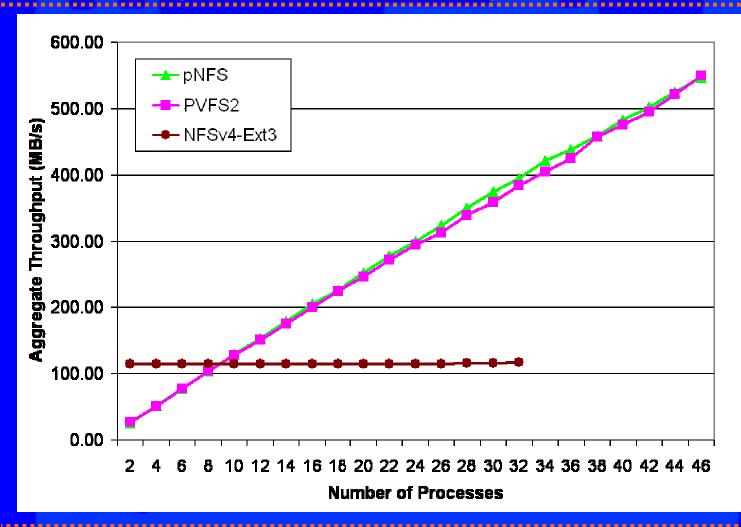

- NFS server exports PVFS2 kernel module
- 32KB requests and indirection reduces performance
- Increase NFSv3 scalability by increasing number of NFSv3 servers
- NFSv4 server maintain state information

pNFS

- IETF NFSv4.1 protocol extension
- Scale with underlying file system
 - Clients performs direct I/O to storage
 - Escape NFSv4 block size restrictions
 - Single file access
- File system independent
 - > Support all layout maps (block, object, file, etc)
 - > Create global namespace of disparate HPC file systems
- Interoperate with standard NFSv4 clients and servers
 - > Storage still accessible through NFSv4 server
- Operate over any NFSv4 infrastructure
- Support existing storage protocols and infrastructures
 - Examples: SBC on Fibre Channel on iSCSI, NFSv4
- Current "industry" support:
 - Sandia, LANL, Netapp, Sun, IBM, Panasas, NEC



pNFS/PVFS2 Prototype Architecture



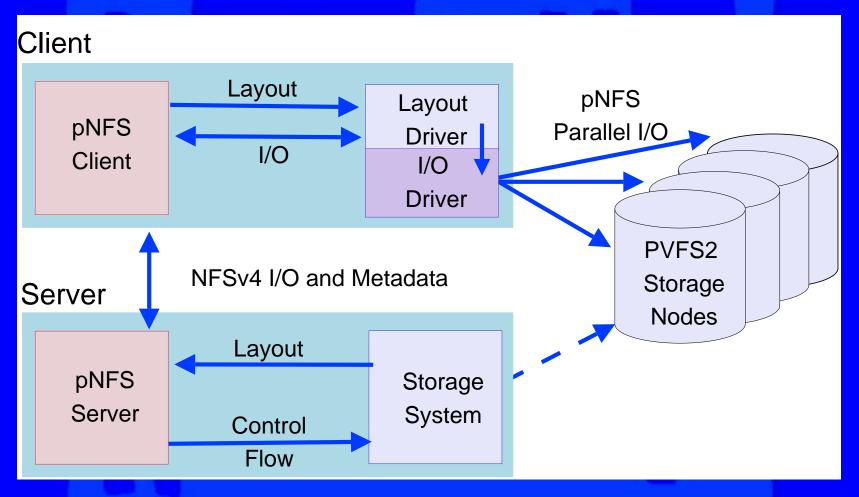
Write Experiments - Separate Files

Read Experiment - Separate Files

pNFS Prototype Extensions

- Optional client data cache
- Client writeback cache
- Client read and write request gathering

More Information


- pNFS/PVFS2 Paper and Prototype www.citi.umich.edu/projects/asci
- pNFS www.pdl.cmu.edu/pNFS
- NFSv4 www.nfsv4.org

NFSv4 Protocol

- Fully integrated security with RPCSEC_GSS
- Integrate Mount and Lock protocols
- File delegations
 - > Client assumes ownership of file
- OPEN and CLOSE commands
 - > Server state
- Enhanced cross-platform interoperability
- Framework for file system migration and replication
- Request bundling
- ♦ NFSv4.1
 - Sessions and RDMA
 - Directory delegations
 - > Secinfo

pNFS Architecture

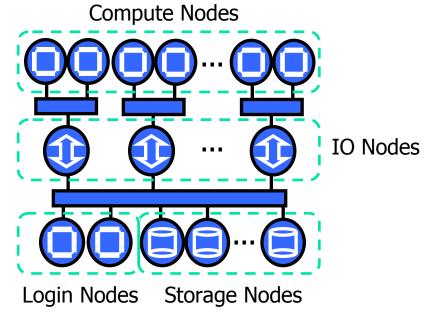
PVFS2 and BlueGene

- PVFS2 features:
 - Largely in userspace
 - Stateless clients; very tolerant of client failures
 - No locks, leases, caches, etc to revalidate/reacquire
 - Good support for heterogeneous clients/servers
- BlueGene features:
 - Thousands of lightweight clients
 - Reboot after every job
 - 3 architectures: storage (x86), login (ppc64), support (ppc32) nodes
- Turns out PVFS2 fits pretty well
 - Honestly, not a surprise but we're still happy

PVFS2 and **ZeptoOS**

- ZeptoOS: researching operating systems for petascale architectures
- ZeptoOS group at ANL:
 - Pete Beckman
 - Kamil Iskra
 - Kazutomo Yoshii
 - Susan Coghlan

http://www.mcs.anl.gov/zeptoos/

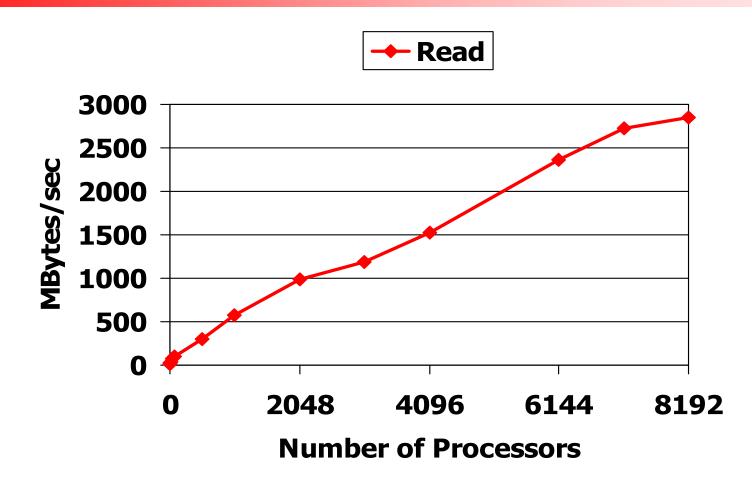

- Guess which file system they use?
- For BGL, ZeptoOS provides custom ramdisk, nicely integrated PVFS2 support

View of I/O on BG/L

- Storage nodes
 - Local access to disks
 - GigE connections to login and IO nodes
- Login nodes
 - Interactive machines
 - Place where data staging will occur
- Support nodes (IO node)
 - Aggregators for compute node I/O
 - 1:8 to 1:64 ratio of IO nodes to compute nodes
 - Tree connection to compute nodes
- Compute nodes
 - Source/sink of runtime I/O

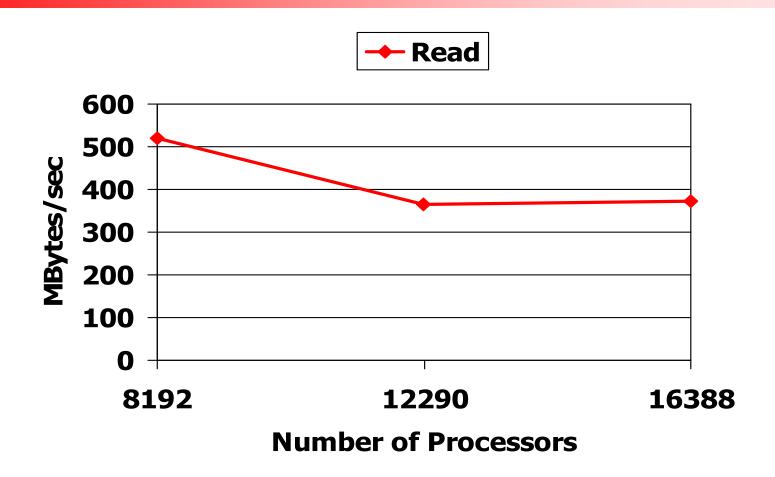
Porting PVFS2

- Rough Timeline:
 - Feb 7: figure out how to use BGL (compiling, running simple MPI jobs)
 - Feb 15: PVFS2 running on servers, login nodes
 - Feb 18: ANL gets source to support node kernel
 - Feb 21: Collect first full-rack scalability numbers
- From dead stop to running I/O benchmarks in 2 man-weeks


BGL and PVFS2 performance at large scale

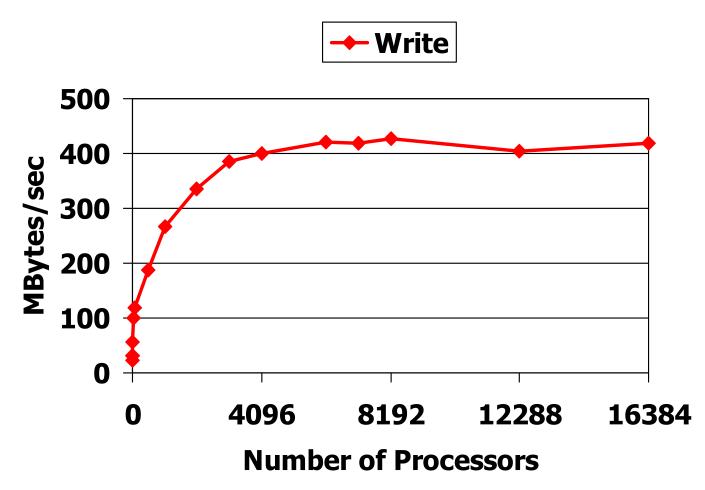
BGW:

- large BlueGene installation at IBM Watson
- 20480 compute nodes
- 33 storage nodes (PVFS2 servers)
- 320 support (IO) nodes: 1 per 64 compute
- Recently held "BGW day"
 - Give app and library developers several hours on 16k nodes.
 - IBM allowed us to install PVFS2
 - Yeah, surprised us too. Thanks, IBM!

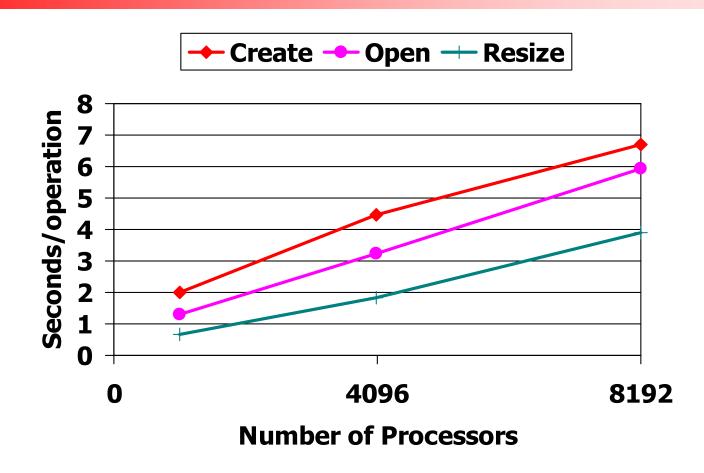

BGW read perf, up to 8K nodes PARALLEL VIRTUAL FILE SYSTEM

- 33 PVFS2 servers: 86 MB/sec per PVFS2 server
- 64 compute nodes per IO node: 22 MB/sec per support node

BGW read performance (2 of 2) PARALLEL VIRTUAL FILE SYSTEM



- different hw config than prior slide
- Bad performance probably due to Ethernet



- Sync after write: ciod serialization
- ciod effects much larger than job placement

- Have to use UFS MPI-IO implementation
- Already looking at ways to improve BGL infrastructure. Compare this next year

Everything Else

- Lots of additional work in progress:
 - Small I/O optimizations (Argonne)
 - Think eager mode for I/O
 - Extented attributes (Argonne)
 - Researching new ways to direct file system behavior
 - Metadata tuning (Heidelberg)
 - Experimenting with new trove implementations
 - Data mirroring (Clemson)
 - Won't be anything left for users to ask of us!

Additional information

- PVFS2 web site: http://www.pvfs.org/pvfs2
 - Documentation, mailing list archives, and downloads
- PVFS2 mailing lists (see web site)
 - Separate users and developers lists
 - Please use these for general questions and discussion!
- Internet Relay Chat (IRC)
 - Server irc.freenode.net, channel #pvfs2
 - Talk directly with developers
- Email
 - Rob Ross <<u>rross@mcs.anl.gov</u>>
 - Walt Ligon <<u>walt@clemson.edu</u>>
 - Pete Wyckoff <<u>pw@osc.edu</u>>
 - Rob Latham <<u>robl@mcs.anl.gov</u>>
 - Sam Lang <slang@mcs.anl.gov>

Thanks for coming!

Any Questions?